Tiesinė lygtis – algebrinė lygtis, kurios kiekvienas yra arba konstanta, arba konstantos ir vieno pirmojo laipsnio sandauga.
Tiesinės lygtys gali turėti du arba daugiau kintamųjų. Tiesinės lygtys yra itin dažnos įvairiose matematikos šakose ir ypač .
Vienas kintamasis
Tiesinė lygtis su vienu nežinomuoju x visada gali būt užrašoma forma
Jei a ≠ 0, egzistuoja tik vienas sprendinys
Jei a = 0, tai:
- jei b ≠ 0, lygtis neturi nė vieno sprendinio;
- jei b taip pat lygu nuliui, bet kuris skaičius yra sprendinys.
Du kintamieji
Dažnai pasitaikanti tiesinių lygčių su dviem kintamaisiais x ir y užrašymo forma yra
kur k ir b nurodo konstantas (parametrus). Pavadinimo „tiesinė lygtis“ kilmė yra faktas, kad šios lygties sprendinių aibė plokštumoje sudaro tiesę.
Šioje lygtyje konstanta k nurodo tiesės krypties koeficientą, o b nurodo tašką, kuriame tiesė kerta Y ašį.
Kadangi tiesinės lygties nariai negali būti sudaryti nei iš skirtingų ar vienodų kintamųjų sandaugų, nei iš kėlimo jokiu laipsniu (išskyrus 0 ir 1), nei iš kokios kitos kintamojo funkcijos, lygtys, turinčios tokius narius kaip xy, x2, y1/3 arba sin(x) yra netiesinė.
Dvimačių tiesinių lygčių išraiškos
Naudojant elementariosios algebros dėsnius, tiesinės lygtys gali būti užrašomas keleta skirtingų formų. Dažnai šios lygtys vadinamos „tiesės lygtimis“. Žemiau pateiktuose pavyzdžiuose x, y, t ir θ yra kintamieji; kitos raidės – konstantos.
Standartinė išraiška
Standartine forma tiesinė lygtis užrašoma taip:
kur nei A, nei B nelygūs nuliui. Pagal susitarimą, dažniausiai lygtis rašoma taip, kad A ≥ 0. Šios lygties grafikas yra tiesė ir kiekviena tiesė gali būti pavaizduojama šia lygtimi. Jei A nelygu nuliui, tai taškas, kuriame tiesė kerta X ašį (y lygu nuliui), yra C/A. Jei B nelygu nuliui, tai taškas, kuriame tiesė kerta Y ašį (x lygu nuliui) yra C/B. Tiesės krypties koeficientas yra -A/B. Standartinė forma (dar vadinama bendraja tiesės lygtimi) kartais užrašoma ir taip:
kur a ir b nelygūs nuliui.
Krypties koeficiento išraiška
kur m yra krypties koeficientas, o b – tašk, kuriame tiesė kerta Y ašį (x lygu nuliui), y koordinatė. Tai galima pamatyti į x vietą įstačius nulį y = mx + b = 0m + b = b, taigi y = b. Vertikalios tiesės, kurių krypties koeficientas neapibrėžtas, negali būti užrašomos šia lygtimi.
Krypties koeficiento ir taško išraiška
kur m yra tiesės krypties koeficientas, o (x1,y1) yra bet kuris tiesės taškas.
Krypties koeficiento ir taško forma pavaizduoja faktą, kad skirtumas tarp dviejų taškų y koordinatės (t. y., y − y1) yra proporcingas skirtumui tarp taškų x koordinatės (t. y., x − x1). Proporcijos konstanta yra m (tieses krypties koeficientas).
Dviejų taškų išraiška
kur (x1, y1) ir (x2, y2) yra du tiesės taškai, kai x2 ≠ x1. Ši lygtis yra tokia pati kaip krypties koeficiento ir taško išraiškos lygtis, tik krypties koeficientas užrašomas taip (y2 − y1)/(x2 − x1).
Abi lygties puses padauginus iš (x2 − x1) gaunama simetriškoji išraiška:
Sudauginus ir pergrupavus narius, gaunama bendroji išraiška:
Naudojant determinantą, gaunama lengvai įsimenama determinanto išraišką:
Ašių kirtimo išraiška
kur a ir bnegali būti lygūs nuliui. Lygties grafikas X ašį kerta taške a, o Y ašį taške b. Ašių kirtimo išraiška yra standartinė išraiška, kai A/C = 1/a ir B/C = 1/b. Tiesės, kertančios koordinačių pradžios tašką, arba tos, kurios yra vertikalios arba horizontalios, negali būti užrašytos šia forma.
Matricos išraiška
Naudojant standartinę išraišką
ją galima perrašyti matrica:
Šį užrašymą galima išplęsti iki tiesinių lygčių sistemos.
tampa:
Kadangi šį užrašymo būdą galima lengvai transformuoti aukštesnėms dimensijoms, tai dažnas vaizdavimo būdas tiesinėje algebroje ir kompiuterių programavime.
Šaltiniai
- Vaidotas Mockus, Algidė Jocaitė. Mokyklinio geometrijos kurso kartojimo medžiaga. – Šiauliai: V.Mockaus įmonė, 2002. – 216 p.
vikipedija, wiki, lietuvos, knyga, knygos, biblioteka, straipsnis, skaityti, atsisiųsti, nemokamai atsisiųsti, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, pictu , mobilusis, telefonas, android, iOS, apple, mobile telefl, samsung, iPhone, xiomi, xiaomi, redmi, honor, oppo, Nokia, Sonya, mi, pc, web, kompiuteris