Funkcija f(x) yra lyginė, jei visiems realiesiems x galioja:
Geometriškai tokių funkcijų grafikas yra simetriškas ordinačių Oy ašies atžvilgiu. Lyginių funkcijų pavyzdžiai: , ir .
Funkcija f(x) yra nelyginė, jei visiems realiesiems x galioja:
arba
Geometriškai tokios funkcijos yra simetriškos koordinačių pradžios taško (0;0) atžvilgiu, t. y. nepasikeičia apsukus koordinačių ašį 180 laipsnių kampu (arba, kitaip tariant, pažiūrėjus į grafiką aukštyn kojomis). Nelyginių funkcijų pavyzdžiai: x, x3, sin(x), sinh(x) ir erf(x). Nelyginės funkcijos grafikui yra būdinga centrinė simetrija koordinačių pradžios taško atžvilgiu.
Funkcijos, neatitinkančios nei lyginių, nei nelyginių funkcijų reikalavimų vadinamos nei lyginėmis, nei nelyginėmis.
Patikrinimo pavyzdžiai
- f(x) = 2 - 3x8;
- f(-x) = 2 - 3(-x)8 = 2 - 3x8 = f(x)
- Išvada: funkcija f(x) = 2 - 3x8 yra lyginė
- f(x) = 5x + 3x3 - sin(x);
- f(-x) = -5x + 3(-x)3 - sin(-x) = -5x - 3x3 + sin(x) = -(5x + 3x3 - sin(x)) = -f(x)
- Išvada: funkcija yra nelyginė
Funkcijos apibrėžimo sritis nėra simetriška taško x atžvilgiu todėl funkcija negali būti lyginė arba nelyginė. Taigi, ji yra nei lyginė, nei nelyginė. Pastaba: Visos funkcijos, kurių apibrėžimo sritis nėra simetriška nulio atžvilgiu yra nei lyginės, nei nelyginės, bet ne visų nei lyginių, nei nelyginių funkcijų apibrėžimo sritis yra nesimetriška nulio atžvilgiu. Tą demonstruoja sekantis pavyzdys.
- f(x) = x + x2 + 1
- f(-x) = - x + x2 + 1
- Matematiškai griežtai įrodyti, kad ši funkcija yra nei lyginė, nei nelyginė, galima pasiėmus kokį nors tašką, nes funkcija turi tenkinti reikalavimus visoje realiųjų skaičių aibėje. Pavyzdžiui, imame x=1:
- f(1)=1 + 12 + 1 = 3
- f(-1)=-1 + (-1)2 + 1 = 1
Kadangi f(-1) ≠ f(1), funkcija nėra lyginė ir kadangi f(-1) ≠ -f(1), funkcija nėra nelyginė, taigi, ji yra nei lyginė, nei nelyginė.
Šaltiniai
- Albertas Steponavičius. Matematika. – Kaunas: Šviesa, 2006. – 46 p.
- Autorių kolektyvas. Matematika. Vadovėlis XI-XII klasei. Suaugusiųjų ir savarankiškam mokymuisi. – Kaunas: Šviesa, 2007. – 35 p.
vikipedija, wiki, lietuvos, knyga, knygos, biblioteka, straipsnis, skaityti, atsisiųsti, nemokamai atsisiųsti, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, pictu , mobilusis, telefonas, android, iOS, apple, mobile telefl, samsung, iPhone, xiomi, xiaomi, redmi, honor, oppo, Nokia, Sonya, mi, pc, web, kompiuteris